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Abstract. Preliminary calculations of the inclusive electromagnetic responses by a polarized 3He target,
including final state interaction effects, relativistic kinematics and a relativistic electron-nucleon cross
section, are presented. The features of our approach will be briefly illustrated, in order to yield an insight
on the model dependence affecting the extraction of the neutron magnetic form factor, Gn

M , from the
inclusive scattering of polarized electrons by a polarized 3He target, recently explored at TJLAB for
0.1 (GeV/c)2 ≤ Q2 ≤ 0.6 (GeV/c)2.

PACS. 13.40Gp, – 13.60.Hb – 21.45+v – 24.70.+s

1 Introduction

In the last few years, an impressive amount of experimen-
tal work (see, for a recent review, K. de Jager [1]) has
been devoted to an accurate investigation of nucleon elec-
tromagnetic (em) form factors, obtaining unexpected re-
sults like the puzzling ratio GE/GM for the proton (see,
e.g., [2]). In order to have a complete knowledge of the
nucleon form factors, one has to face with the particu-
larly difficult problem represented by the extraction of
the neutron em form factors, since free neutron targets
do not exist in nature. To overcome such a difficulty, light
nuclei, such as deuteron or polarized 3He, have been con-
sidered as an effective neutron target. As a matter of fact,
within a naive model for a polarized 3He target with only
a symmetric S-wave component in the bound-state, the
two protons have opposite spins and therefore only the
neutron spin contributes to the em polarized responses of
the target. Within a realistic description of 3He, it is not
a trivial task to disentangle the neutron information from
the nuclear-structure effects, given the many effetcs play-
ing relevant roles, like: i) the ”small” components of the
bound-state wave function; ii) the ∆ excitation; iii) the
inclusion of the final state interaction (FSI), between the
knocked-out nucleon and the interacting spectator pair;
iv) the meson exchange currents (MEC); v) the relativis-
tic corrections. As a first step, the analysis of inclusive re-
sponses of polarized 3He was carried out within the plane
wave impulse approximation (PWIA) in [3,4,5,6], where
realistic nucleon-nucleon interactions were adopted and in

the final state only the interaction between the spectator
pair and the knocked-out nucleon was disregarded. More-
over a relativistic electron-nucleon cross section [7] was
adopted.

Recently, a step forward has been performed through
calculations of the em responses which include FSI, but
within a non relativistic framework [8,9].

In this contribution, a review of recent applications of
our PWIA description of the polarized responses will be
given, along with a presentation of preliminary calcula-
tions which include FSI in the two-body break-up chan-
nel.

In Sect. 2 the polarized cross section in PWIA will
be briefly reviewed and relevant applications will be pre-
sented; in Sect. 3 the fully-interacting wave function for
a three-nucleon system in the continuous spectrum will
be introduced; in Sect. 4, preliminary results with FSI for
the transverse response of a polarized 3He target will be
shown; Sect. 5 contains summary and perspectives.

2 The polarized cross section in PWIA

The inclusive scattering of polarized electrons (with helic-

ity h) by a polarized 3He target (
→
e + 3

→
He → e′ + X)

is given by

d2σ(h)
dΩ2dω

= Σ + h ∆ (1)
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with

Σ = σMott

[(
Q2

|q|2

)2

AL(Q2, ω)+

+
(
Q2

2|q|2 + tan2 θe

2

)
AT (Q2, ω)

]
(2)

∆ = − σMott tan
θe

2
×{

cosθ∗ AT ′(Q2, ω)
(εi + εf )

|q| tan
θe

2
+

− Q2

|q|2
√

2
sinθ∗cosφ∗ ATL′(Q2, ω)

}
(3)

where θe is the scattering angle, εi(f) the energy of the
initial (final) electron, θ∗ and φ∗ are the azimuthal and
polar angles of the target polarization vector, with re-
spect to the direction of the three-momentum transfer
q; Q2 = |q|2 − ω2, with ω the energy transfer. The un-
polarized (AL, AT ) and polarized (AT ′ , ATL′) inclusive
responses contain the nuclear-structure effects. The key
point in our PWIA calculation of the inclusive responses
is the following approximation of the three-nucleon wave
function describing the final state, viz.

|j, jz, T, Tz, π, εint, α;P〉 → 1√
3

×

|pf , σfτf 〉|j23m23, T23τ23, π23, λ23, ε23;P23〉 (4)

with j(jz) the total angular momentum (third compo-
nent), T (Tz) the total isospin (third component), π the
total parity, εint the intrinsic energy of the three-nucleon
system, α ≡ {j23T23λ23, π23, ε23}, P = pf +P23 the three-
momentum of the three-nucleon centre of mass (CM),
|pf , σfτf 〉 the plane wave describing the knocked-out nu-
cleon. In (4), the wave function of the fully-interacting
spectator pair is given by |j23m23, T23τ23, π23, ε23;P23〉.
The other terms, that properly antisymmetrize the ap-
proximated three-nucleon wave function, are dropped out,
since only the direct interaction between the virtual pho-
ton and the struck nucleon is taken into account.

Following [4], the nuclear response functions can be ex-
pressed through a 2x2 matrix, P̂N

M(p, E), representing the
spin dependent spectral function of a nucleon, N , inside a
nucleus with component of the total angular momentum
along the polarization SA equal to M. The elements of
the matrix P̂N

M(p, E) are given by

PN
σ,σ′,M(p, E) =

∑
f(A−1)

N 〈p, σ;ψf(A−1)
|ψjM〉

〈ψjM|ψf(A−1) ;p, σ
′〉N δ(E − Ef(A−1) + EA) (5)

where E and p are the missing energy and the three-
momentum of the nucleon in the bound state, respec-
tively, |ψjM〉 is the ground state of the target nucleus
with polarization SA, and |ψf(A−1) ;p, σ

′〉N a shorthand

Fig. 1. The transverse asymmetry AT ′ vs the energy transfer,
ω, for different values of Q2. Dashed lines: PWIA calculations
within our approach [5]; dash-dotted lines and solid lines: Fad-
deev calculations with FSI only and with FSI + MEC, respec-
tively [8,9]. (After W. Xu et al. [10])

notation for the plane wave impulse approximation of a
three-nucleon system in the continuum, given by (4). For
j = 1/2, P̂N

M(p, E) can be written in a more compact
form as follows [4]

P̂N
M(p, E) =

1
2

{
BN

0,M(|p|, E) +

σ ·
[
SA BN

1,M(|p|, E) + p̂ (p̂ · SA) BN
2,M(|p|, E)

]}
(6)

where BN
0,M(|p|, E) is the trace of P̂N

M(p, E) and is the
usual unpolarized spectral function, while the other two
functions, BN

1,M(|p|, E) and BN
2,M(|p|, E), describe the

spin structure of the probability distribution of finding
a nucleon in the nucleus with a given momentum, missing
energy and polarization. Then, the calculation of the in-
clusive responses in (2) and (3) proceeds through the eval-
uation of the functions BN

i,M [3,4]. It should be pointed
out that, in our PWIA, we take into account relativis-
tic effects, like the relativistic treatment of the final state
kinematics and the relativistic electron-nucleon cross sec-
tion CC1 proposed in [7]. In Figs. 1 and 2 calculations
of the transverse (polarized) response AT ′ , obtained with
the AV18 nucleon-nucleon potential [11], are compared
with the data recently measured at TJLAB, both in the
region of the quasielastic peak (Fig. 1) and in the low
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Fig. 2. The transverse asymmetry AT ′ vs EX =√
M2

He + 2MHeω − Q2 − MHe (in the non relativistic limit
EX = εint + BHe). Dash-dotted lines: our PWIA calculations
[5]; dashed and solid lines: FSI and FSI + MEC calculations
[8,9], respectively. Experimental data belong to a kinematical
region where the energy transfer is lower than the value corre-
sponding to the quasielastic peak (after F. Xiong et al. [14])

energy-transfer region (Fig. 2). At low values of Q2, cal-
culations [8,9] including FSI and MEC, but within a non
relativistic approach, are also shown. On one side, the dis-
agreement, at low Q2, between our PWIA calculations
[5] and both experimental data and calculations including
FSI illustrates the relevance of nuclear-structure effects
beyond PWIA. On the other side, at higher values of Q2,
in the region close to the quasielastic peak, the quite rea-
sonable description of the data achieved by our PWIA
(that contains relativistic effects) confirms the physical
expectation of a minor role played by FSI, when the nu-
cleon rapidly gets out. Experimental data in the region
of the quasielastic peak and theoretical results (necessary
for an estimate of the model dependence of the procedure)
have been exploited for extracting the neutron form fac-
tor, Gn

M (Q2) in the range 0.1 ≤ Q2 ≤ 0.6 (GeV/c)2,
see Fig. 3. For Q2 ≤ 0.2 (GeV/c)2 (diamonds) the calcu-
lations by the Bochum group [8,9] were used, while for
Q2 > 0.2 (GeV/c)2 our PWIA calculations have been
employed in the procedure of extraction [13] (full dots).
At the quasielastic peak, the uncertainties due to FSI
and MEC, estimated from the calculations of the Bochum
group, amount to few percent for Q2 > 0.2 (GeV/c)2, see
W. Xu et al. [13].

3 Three-nucleon scattering states

The fully-interacting, intrinsic wave function, for a three-
nucleon system in the continuous spectrum, can be de-

Fig. 3. The most recent experimental determinations of
Gn

M/µnGD vs Q2 (GD = (1 + Q2/0.71)−2). Triangles: G.
Kubon et al. [15]; diamonds: W. Xu et al. [10]; black squares:
H. Anklin et al. [12]; full dots: W. Xu et al. [13]. The full dots
have been extracted [13] using our PWIA calculations [5]

composed [16] as follows

ΦjjzTTzπ = Ψ jjzTTzπ
A + Ψ jjzTTzπ

C =

=
∑
i=3

[
ψjjzTTzπ

A (i) + ψjjzTTzπ
C (i)

]
(7)

where the intrinsic energy is understood; Ψ jjzTTzπ
A is the

solution of the Schrödinger equation in the asymptotic re-
gion, with two well separated clusters, Ψ jjzTTzπ

C describes
the system when the three nucleons are close each other.
The functions ψjjzTTzπ

A (i) and ψjjzTTzπ
C (i) are Faddeev-

like amplitudes, corresponding to the three permutations
of the intrinsic coordinates (≡ {r1, r2, r3}).

The asymptotic component, Ψ jjzTTzπ
A , can be recast in

a different way, in order to emphasize its physical content.
If one considers the case of a N-d scattering state, for the
sake of concreteness, one has

ΨLXjjzTTzπ
A = ΩR

LXj(x1,y1) +

+
∑
L′X′

jLXX′
LL′

[
ı ΩR

L′X′j(x1,y1) +ΩI
L′X′j(x1,y1)

]
+

+
[
ψLXjjzTTz

A (2) + ψLXjjzTTz

A (3)
]

(8)

where L is the relative orbital angular momentum of N
with respect to the deuteron, X is the intermediate cou-
pling of the spin of the nucleon with the total angular
momentum of the deuteron, and the intrinsic coordinates
{x1, y1} are defined as follows

x1 = r2 − r3 y1 =
1√
3

[r2 + r3 − 2r1] . (9)

In (8), ΩR(I)
LXJ represents the regular (”irregular”, but prop-

erly regularized at small distances [16,17]) solution de-
scribing the free scattering of a nucleon by an interacting
pair (in this case a deuteron); the matrix L is given by

L =
S − 1

2ı
= −πT (10)
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Fig. 4. The density function defined in (13) vs the two Jacobi
coordinates, {|x1|, |y1|} for j = 1/2, T = 1/2, π = +1 and
εint = 1.1 MeV

with S and T the S-matrix and the T-matrix, respec-
tively. Similar expressions hold for ψLXjjzTTz

A (2) and
ψLXjjzTTz

A (3). Three terms can be recognized in (8):
– the first one produces the PWIA, i.e. contains an in-

teracting pair and a free particle;
– the second term describes the rescattering between the

interacting pair and the asymptotically free particle;
– the third term,

[
ψLXjjzTTz

A (2) + ψLXjjzTTz

A (3)
]
, takes

care of the correct antisymmetrization of Ψ jjzTTzπ
A .

The core component, Ψ jjzTTzπ
C , goes to zero for large

interparticle distances and energies below the deuteron
breakup threshold, while for higher energies, must repro-
duce a three outgoing particle state. In the approach de-
veloped in [16], Ψ jjzTTzπ

C is explicitly written as an ex-
pansion on a basis of Hyperspherical Harmonics Polyno-
mials, with the inclusion of pair-correlation functions, to
be determined along with the elements of the S-matrix
(see (10)), through a variational procedure (complex Kohn
variational principle).

In the coordinate space the state (7) can be written

〈y1,x1|j, jz;TTz, π, εint;β〉 =
1√
3

∑
L′X′

∑
j′
23S′

23

∑
�

Yj′
23S′

23�
L′X′jjzTTz

(x̂1, ŷ1) J j′
23S′

23�
L′X′jT (|y1|, |x1|, εint;β) (11)

where β ≡ {α;LX} is the set of quantum numbers of the
incoming wave. The “trivial” dependence upon angular,
spin and isospin variables is described by the functions

Yj′
23S′

23�
L′X′jjzTTz

(x̂1, ŷ1) =
∑
Mσ

∑
MXm23

〈j′
23m23

1
2
σ|X ′MX′〉 χσ

1
2

〈X ′MX′L′M ′|jjz〉 YL′M ′(Ωŷ1)
∑
m

∑
mS23

χ
mS′

23
S′

23
Y�m(Ωx̂1)

Fig. 5. The density function defined in (13) vs the two Jacobi
coordinates, {|x1|, |y1|} for j = 1/2, T = 1/2, π = −1 and
εint = 1.1 MeV

〈�mS′
23mS′

23
|j′

23m
′
23〉

∑
τ ′τ ′

23

〈T ′
23τ

′
23

1
2
τ ′|TTz〉 T τ ′

1
2

T τ ′
23

T ′
23

(12)

that form a complete basis for a two-fermion system (T ′
23

is determined through the parity of S′
23 and �), while the

”non trivial” structure of the final state wave function is
described by J j′

23S′
23�

L′X′jT (|y1|, |x1|, εint;β). In order to give
an insight on the three-nucleon wave function, it is useful
to introduce density functions defined as follows

ρ(|y1|, |x1|, α) =

=
∑
LX

∑
L′X′

∑
j′
23S′

23

∑
�

{∣∣∣�e [
J j′

23S′
23�

L′X′jT (|y1|, |x1|, εint;β)
]∣∣∣2 +

+
∣∣∣�m [

J j′
23S′

23�
L′X′jT (|y1|, |x1|, εint;β)

]∣∣∣2} (13)

Such density functions yield information on the probabil-
ity distribution of a nucleon in the final state, taking into
account the caveat that the wave functions in the contin-
uum are not square integrable. Examples of the density
function for a state with an asymptotic p + d cluster is
presented in Figs. 4 and 5 for j = 1/2+ and j = 1/2−,
respectively, with εint = 1.1 MeV.

4 Beyond PWIA

In order to include the full interaction between the three
nucleons in the final state, one has to abandon the elegant
and compact language of the spectral functions, reverting
to a lenghty calculation of matrix elements of the current
operator of the three-body system. We approximate the
current operator as a sum of one-body operators, i.e. we
do not consider for the moment two-body contributions,
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viz

〈j′, j′
z;T

′, T ′
z, π

′, ε′int;β
′;q|Jµ

IA(0)|1
2
, jz;

1
2
, Tz, πb, εb;0〉 =

= 3
∑
σ1

∑
σ′
1

∑
σ2

∑
σ3

∫
dk1 dk2 ×

〈j′, j′
z;T

′, T ′
z, π

′, ε′int;β|k′
1,k

′
2, σ

′
1, σ2, σ3〉 ×

〈q + k1, σ
′
1|J

µ
1,free(0)|k1, σ1〉 ×

〈k1,k2, σ1, σ2, σ3|
1
2
, jz;

1
2
, Tz, πb, εb〉 (14)

where 〈k1,k2, σ1, σ2, σ3|j, jz;T, Tz, π, ε〉 indicates the in-
trinsic three-body wave function, related to the state con-
taining the centre of mass motion by the following simpli-
fied expression

〈p1,p2,p3, σ1, σ2, σ3|j, jz;T, Tz, π, ε;P〉 =
δ(p1 + p2 + p3 − P) ×
〈k1,k2, σ1, σ2, σ3|j, jz;T, Tz, π, ε〉 (15)

where ki is the spatial part of the four-momentum kµ
i ≡

{
√
m2 + |ki|2,ki} = Bµ

ν (P/M)pµ
i , with Bµ

ν the appro-
priate boost for the chosen Hamiltonian dynamics (see,
e.g., [19]). The expression in (15) is an approximate one,
since the Wigner functions corresponding to the boost
transformations, as well as other kinematical factors, are
dropped out in this introductory presentation of our ap-
proach. Our preliminary calculations based on the matrix
elements of the em current of 3He, (14), both for the unpo-
larized (AL and AT ) and the polarized (AT ′) responses are
presented in Figs. 6,7,8 and 9. FSI is taken into account
in the two-body break-up channel (where a fully interact-
ing three-nucleon state behaves asymptotically like a pd
system) for j′ ≤ 5/2, while PWIA is used in all other chan-
nels. The AV18 nucleon-nucleon interaction [11] has been
adopted, without Coulomb effects nor three-body forces
(included in the future). Comparisons with the experimen-
tal data and the PWIA calculations are also shown. The
strong effect of FSI is fully confermed and qualitatively
we obtain the same results by the Bochum group [8,9].

5 Summary and perspectives

Recently the inclusive scattering of polarized electrons by
a polarized 3He target have been measured at TJLAB,
both in the region of the quasi elastic peak and in the
low-ω wing. The direct comparison of calculations cor-
responding to different theoretical approaches with these
experimental results allows one to better understand the
model dependence in the extraction of the neutron mag-
netic form factor Gn

M . Indeed for a satisfactory interpreta-
tion of the data one needs accurate theoretical calculations
that include effects beyond the PWIA, such as i) FSI, ii)
MEC, iii) relativistic effects and iv) contributions from
the explicit presence of the ∆ excitation in the ground
state of 3He. In our calculations we have adopted both
relativistic kinematics and a relativistic electron-nucleon

Fig. 6. Unpolarized response functions, AL and AT , vs the the
missing energy EX =

√
(ω + MHe)2 − |q|2 − MHe � B3 + ε′

int

for |q| ∼ 175 MeV . Solid curves: PWIA calculations, with un-
polarized spectral function obtained [5] from the AV18 nucleon-
nucleon interaction [11]. Triangles: preliminary calculations
with FSI. Experimental data from [18]

Fig. 7. The transverse response AT ′ for Q2 = 0.1 (GeV/c)2 vs
the excitation energy, EX, at low energy transfer, as in Fig. 2.
Solid line: PWIA; triangles: preliminary results with FSI. Ex-
perimental data from F. Xiong et al. [14]
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Fig. 8. The same as in Fig. 7, but for Q2 = 0.2 (GeV/c)2

Fig. 9. The transverse response AT ′ for Q2 = 0.1 (GeV/c)2

vs the energy transfer, ω, in the region of the quasielastic peak.
Solid line: PWIA; triangles: preliminary results with FSI. Ex-
perimental data from W. Xu et al. [10]

cross section [7], and we have taken into account exactly
the FSI in the two-body break-up channel, by using the
three-nucleon wave functions obtained by the Pisa group
[16,17] within a variational approach for both the bound
and the excited states.

The development of our approach will follow two dis-
tinct paths: i) a better treatment of the relativistic effects

within the so called Relativistic Hamiltonian Dynamics
(see, e.g., B.D. Keister and W. Polyzou [19]), that allows
a Poincaré covariant description of an interacting system
with a fixed number of particles; ii) the inclusion of FSI
in the three-body break-up channels, Coulomb effects and
three-body forces.
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